Differing conformational pathways before and after chemistry for insertion of dATP vs. dCTP opposite 8-oxoG in DNA polymerase β

نویسندگان

  • Yanli Wang
  • Sujatha Reddy
  • Tamar Schlick
  • William A. Beard
  • Samuel H. Wilson
چکیده

To elucidate how human DNA polymerase β (pol β) discriminates dATP from dCTP when processing 8-oxoguanine (8-oxoG), we analyze a series of dynamics simulations before and after the chemical step with dATP and dCTP opposite an 8-oxoG template started from partially open complexes of pol β. Analyses reveal that the thumb closing of pol β before chemistry is hampered when the incorrect nucleotide dATP is bound opposite 8-oxoG; the unfavorable interaction between active-site residue Tyr271 and dATP that causes an anti to syn change in the 8-oxoG (syn):dATP complex explains this slow motion, in contrast to the 8-oxoG (anti):dCTP system. Such differences in conformational pathways before chemistry for mismatched vs. matched complexes help explain the preference for correct insertion across 8-oxoG by pol β. Together with reference studies with an nonlesioned G template, we propose that 8-oxoG leads to lower efficiency in pol β’s incorporation of dCTP compared with G by affecting the requisite activesite geometry for the chemical reaction before chemistry. Furthermore, because the active site is far from ready for the chemical reaction following partial closing or even full thumb closing, we suggest that pol β is tightly controlled not only by the chemical step but also by a closely related requirement for subtle active-site rearrangements following thumb movement but prior to chemistry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta.

To elucidate how human DNA polymerase beta (pol beta) discriminates dATP from dCTP when processing 8-oxoguanine (8-oxoG), we analyze a series of dynamics simulations before and after the chemical step with dATP and dCTP opposite an 8-oxoG template started from partially open complexes of pol beta. Analyses reveal that the thumb closing of pol beta before chemistry is hampered when the incorrect...

متن کامل

Error-Free Bypass of 7,8-dihydro-8-oxo-2′-deoxyguanosineby DNA Polymerase of Pseudomonas aeruginosa Phage PaP1

As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonasaeruginosa phage PaP1, we performed steady-state and pre-steady-state kinetic analyses of nucleotide incorporation opposite 8-oxoG by Gp90 D234A that lacks exo...

متن کامل

DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion

A major base lesion resulting from oxidative stress is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxoG) that has ambiguous coding potential. Error-free DNA synthesis involves 8-oxoG adopting an anti-conformation to base pair with cytosine whereas mutagenic bypass involves 8-oxoG adopting a syn-conformation to base pair with adenine. Left unrepaired the syn-8-oxoG/dAMP base pair results in a G-C to ...

متن کامل

Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.

Oxidation of genomic DNA forms the guanine lesion 7,8-dihydro-8-oxoguanine (8-oxoG). When in the template base position during DNA synthesis the 8-oxoG lesion has dual coding potential by virtue of its anti- and syn-conformations, base pairing with cytosine and adenine, respectively. This impacts mutagenesis, because insertion of adenine opposite template 8-oxoG can result in a G to T transvers...

متن کامل

How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template.

The modified base 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007